Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557489

RESUMO

Regulated exocytosis is initiated by increased Ca2+ concentrations in close spatial proximity to secretory granules, which is effectively prevented when the cell is at rest. Here we showed that exocytosis of zymogen granules in acinar cells was driven by Ca2+ directly released from acidic Ca2+ stores including secretory granules through NAADP-activated two-pore channels (TPCs). We identified OCaR1 (encoded by Tmem63a) as an organellar Ca2+ regulator protein integral to the membrane of secretory granules that controlled Ca2+ release via inhibition of TPC1 and TPC2 currents. Deletion of OCaR1 led to extensive Ca2+ release from NAADP-responsive granules under basal conditions as well as upon stimulation of GPCR receptors. Moreover, OCaR1 deletion exacerbated the disease phenotype in murine models of severe and chronic pancreatitis. Our findings showed OCaR1 as a gatekeeper of Ca2+ release that endows NAADP-sensitive secretory granules with an autoregulatory mechanism preventing uncontrolled exocytosis and pancreatic tissue damage.


Assuntos
Canais de Cálcio , Cálcio , Camundongos , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Pâncreas/metabolismo , Exocitose/fisiologia , Vesículas Secretórias/genética
2.
Sci Adv ; 9(38): eadh1653, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37729408

RESUMO

Migratory dendritic cells (migDCs) continuously patrol tissues and are activated by injury and inflammation. Extracellular adenosine triphosphate (ATP) is released by damaged cells or actively secreted during inflammation and increases migDC motility. However, the underlying molecular mechanisms by which ATP accelerates migDC migration is not understood. Here, we show that migDCs can be distinguished from other DC subsets and immune cells by their expression of the voltage-gated calcium channel subunit ß3 (Cavß3; CACNB3), which exclusively facilitates ATP-dependent migration in vitro and during tissue damage in vivo. By contrast, CACNB3 does not regulate lipopolysaccharide-dependent migration. Mechanistically, CACNB3 regulates ATP-dependent inositol 1,4,5-trisphophate receptor-controlled calcium release from the endoplasmic reticulum. This, in turn, is required for ATP-mediated suppression of adhesion molecules, their detachment, and initiation of migDC migration. Thus, Cacnb3-deficient migDCs have an impaired migration after ATP exposure. In summary, we identified CACNB3 as a master regulator of ATP-dependent migDC migration that controls tissue-specific immunological responses during injury and inflammation.


Assuntos
Trifosfato de Adenosina , Canais de Cálcio , Humanos , Transporte Biológico , Inflamação , Células Dendríticas
3.
Cell Physiol Biochem ; 54(6): 1115-1131, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33166100

RESUMO

BACKGROUND/AIMS: The release of insulin in response to increased levels of glucose in the blood strongly depends on Ca2+ influx into pancreatic beta cells by the opening of voltage-gated Ca2+ channels. Transient Receptor Potential Melastatin 3 proteins build Ca2+ permeable, non-selective cation channels serving as pain sensors of noxious heat in the peripheral nervous system. TRPM3 channels are also strongly expressed in pancreatic beta cells that respond to the TRPM3 agonist pregnenolone sulfate with Ca2+ influx and increased insulin release. Therefore, we hypothesized that in beta cells TRPM3 channels may contribute to pregnenolone sulfate- as well as to glucose-induced insulin release. METHODS: We used INS-1 cells as a beta cell model in which we analysed the occurrence of TRPM3 isoformes by immunoprecipitation and western blotting and by cloning of RT-PCR amplified cDNA fragments. We applied pharmacological as well as CRISPR/Cas9-based strategies to analyse the interplay of TRPM3 and voltage-gated Ca2+ channels in imaging experiments (FMP, Fura-2) and electrophysiological recordings. In immunoassays, we examined the contribution of TRPM3 channels to pregnenolone sulfate- and glucose-induced insulin release. To confirm our findings, we generated beta cell-specific Trpm3-deficient mice and compared their glucose clearance with the wild type in glucose tolerance tests. RESULTS: TRPM3 channels triggered the activity of voltage-gated Ca2+ channels and both channels together contributed to insulin release after TRPM3 activation. Trpm3-deficient INS-1 cells lacked pregnenolone sulfate-induced Ca2+ signals just like the pregnenolone sulfate-induced insulin release. Both, glucose-induced Ca2+ signals and the glucose-induced insulin release were strongly reduced. Accordingly, Trpm3-deficient mice displayed an impaired decrease of the blood sugar concentration after intraperitoneal or oral administration of glucose. CONCLUSION: The present study suggests an important role for TRPM3 channels in the control of glucose-dependent insulin release.


Assuntos
Sinalização do Cálcio , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Linhagem Celular , Camundongos , Camundongos Mutantes , Ratos , Canais de Cátion TRPM/genética
4.
J Cell Biol ; 217(2): 667-683, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29288152

RESUMO

Cytotoxic T lymphocytes (CTLs) kill target cells by the regulated release of cytotoxic substances from granules at the immunological synapse. To kill multiple target cells, CTLs use endocytosis of membrane components of cytotoxic granules. We studied the potential calcium dependence of endocytosis in mouse CTLs on Flower, which mediates the calcium dependence of synaptic vesicle endocytosis in Drosophila melanogaster Flower is predominantly localized on intracellular vesicles that move to the synapse on target cell contact. Endocytosis is entirely blocked at an early stage in Flower-deficient CTLs and is rescued to wild-type level by reintroducing Flower or by raising extracellular calcium. A Flower mutant lacking binding sites for the endocytic adaptor AP-2 proteins fails to rescue endocytosis, indicating that Flower interacts with proteins of the endocytic machinery to mediate granule endocytosis. Thus, our data identify Flower as a key protein mediating granule endocytosis.


Assuntos
Canais de Cálcio/metabolismo , Grânulos Citoplasmáticos/metabolismo , Endocitose , Animais , Canais de Cálcio/deficiência , Canais de Cálcio/genética , Células Cultivadas , Camundongos , Camundongos Knockout , Mutação , Baço/citologia , Baço/metabolismo
5.
Sci Rep ; 6: 32981, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27624684

RESUMO

TRPM4 proteins form Ca(2+)-activated non selective cation (CAN) channels that affect transmembrane Ca(2+)-influx by determining the membrane potential. Tight control of the intracellular Ca(2+) concentration is essential for mast cell responses. In this study, we analyzed the expression of TRPM4 in peritoneal mast cells (PCMC) as a model for connective tissue type mast cells with respect to FcεRI-evoked calcium changes and the subcellular localization of fluorescently labeled TRPM4 using two viral transduction systems before and following antigen stimulation. Our results show that TRPM4 is expressed in PCMCs, is an essential constituent of the endogenous CAN channels in PCMCs and regulates antigen-evoked increases in intracellular calcium that are significantly enhanced in TRPM4-deficient PCMCs. Compared to PCMCs analyzed before antigen stimulation, the cells depict a substantially increased localization of TRPM4 proteins towards the plasma membrane after FcεRI stimulation. Thus, TRPM4 functions as a limiting factor for antigen evoked calcium rise in connective tissue type mast cells and concurrent translocation of TRPM4 into the plasma membrane is part of this mechanism.


Assuntos
Cálcio/metabolismo , Células do Tecido Conjuntivo/metabolismo , Mastócitos/metabolismo , Receptores de IgE/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Membrana Celular/metabolismo , Células Cultivadas , Potenciais da Membrana , Camundongos , Transporte Proteico
6.
Eur Heart J ; 36(33): 2257-66, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26069213

RESUMO

AIMS: Pathological cardiac hypertrophy is a major predictor for the development of cardiac diseases. It is associated with chronic neurohumoral stimulation and with altered cardiac Ca(2+) signalling in cardiomyocytes. TRPC proteins form agonist-induced cation channels, but their functional role for Ca(2+) homeostasis in cardiomyocytes during fast cytosolic Ca(2+) cycling and neurohumoral stimulation leading to hypertrophy is unknown. METHODS AND RESULTS: In a systematic analysis of multiple knockout mice using fluorescence imaging of electrically paced adult ventricular cardiomyocytes and Mn(2+)-quench microfluorimetry, we identified a background Ca(2+) entry (BGCE) pathway that critically depends on TRPC1/C4 proteins but not others such as TRPC3/C6. Reduction of BGCE in TRPC1/C4-deficient cardiomyocytes lowers diastolic and systolic Ca(2+) concentrations both, under basal conditions and under neurohumoral stimulation without affecting cardiac contractility measured in isolated hearts and in vivo. Neurohumoral-induced cardiac hypertrophy as well as the expression of foetal genes (ANP, BNP) and genes regulated by Ca(2+)-dependent signalling (RCAN1-4, myomaxin) was reduced in TRPC1/C4 knockout (DKO), but not in TRPC1- or TRPC4-single knockout mice. Pressure overload-induced hypertrophy and interstitial fibrosis were both ameliorated in TRPC1/C4-DKO mice, whereas they did not show alterations in other cardiovascular parameters contributing to systemic neurohumoral-induced hypertrophy such as renin secretion and blood pressure. CONCLUSIONS: The constitutively active TRPC1/C4-dependent BGCE fine-tunes Ca(2+) cycling in beating adult cardiomyocytes. TRPC1/C4-gene inactivation protects against development of maladaptive cardiac remodelling without altering cardiac or extracardiac functions contributing to this pathogenesis.


Assuntos
Canais de Cálcio/fisiologia , Sinalização do Cálcio/fisiologia , Cardiomegalia/metabolismo , Miócitos Cardíacos/metabolismo , Canais de Cátion TRPC/fisiologia , Angiotensina II/metabolismo , Angiotensinogênio/metabolismo , Animais , Cálcio/metabolismo , Cardiomegalia/fisiopatologia , Hemodinâmica/fisiologia , Homeostase/fisiologia , Camundongos Knockout , Remodelação Ventricular
7.
J Biol Chem ; 287(44): 36663-72, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22961981

RESUMO

TRPM3 channels form ionotropic steroid receptors in the plasma membrane of pancreatic ß and dorsal root ganglion cells and link steroid hormone signaling to insulin release and pain perception, respectively. We identified and compared the function of a number of TRPM3 splice variants present in mouse, rat and human tissues. We found that variants lacking a region of 18 amino acid residues display neither Ca(2+) entry nor ionic currents when expressed alone. Hence, splicing removes a region that is indispensable for channel function, which is called the ICF region. TRPM3 variants devoid of this region (TRPM3ΔICF), are ubiquitously present in different tissues and cell types where their transcripts constitute up to 15% of the TRPM3 isoforms. The ICF region is conserved throughout the TRPM family, and its presence in TRPM8 proteins is also necessary for function. Within the ICF region, 10 amino acid residues form a domain essential for the formation of operative TRPM3 channels. TRPM3ΔICF variants showed reduced interaction with other TRPM3 isoforms, and their occurrence at the cell membrane was diminished. Correspondingly, coexpression of ΔICF proteins with functional TRPM3 subunits not only reduced the number of channels but also impaired TRPM3-mediated Ca(2+) entry. We conclude that TRPM3ΔICF variants are regulatory channel subunits fine-tuning TRPM3 channel activity.


Assuntos
Processamento Alternativo , Canais de Cátion TRPM/genética , Sequência de Aminoácidos , Animais , Sinalização do Cálcio , Sequência Conservada , Éxons , Células HEK293 , Humanos , Imunoprecipitação , Potenciais da Membrana , Camundongos , Dados de Sequência Molecular , Técnicas de Patch-Clamp , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sítios de Splice de RNA , Ratos , Homologia de Sequência de Aminoácidos , Canais de Cátion TRPM/química , Canais de Cátion TRPM/metabolismo
8.
J Biol Chem ; 287(22): 17930-41, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22427671

RESUMO

Replacement of aspartate residue 541 by alanine (D541A) in the pore of TRPV6 channels in mice disrupts Ca(2+) absorption by the epididymal epithelium, resulting in abnormally high Ca(2+) concentrations in epididymal luminal fluid and in a dramatic but incomplete loss of sperm motility and fertilization capacity, raising the possibility of residual activity of channels formed by TRPV6(D541A) proteins (Weissgerber, P., Kriebs, U., Tsvilovskyy, V., Olausson, J., Kretz, O., Stoerger, C., Vennekens, R., Wissenbach, U., Middendorff, R., Flockerzi, V., and Freichel, M. (2011) Sci. Signal. 4, ra27). It is known from other cation channels that introducing pore mutations even if they largely affect their conductivity and permeability can evoke considerably different phenotypes compared with the deletion of the corresponding protein. Therefore, we generated TRPV6-deficient mice (Trpv6(-/-)) by deleting exons encoding transmembrane domains with the pore-forming region and the complete cytosolic C terminus harboring binding sites for TRPV6-associated proteins that regulate its activity and plasma membrane anchoring. Using this strategy, we aimed to determine whether the TRPV6(D541A) pore mutant still contributes to residual channel activity and/or channel-independent functions in vivo. Trpv6(-/-) males reveal severe defects in fertility and motility and viability of sperm and a significant increase in epididymal luminal Ca(2+) concentration that is mirrored by a lack of Ca(2+) uptake by the epididymal epithelium. Therewith, Trpv6 excision affects epididymal Ca(2+) handling and male fertility to the same extent as the introduction of the D541A pore mutation, arguing against residual functions of the TRPV6(D541A) pore mutant in epididymal epithelial cells.


Assuntos
Canais de Cálcio/genética , Cálcio/metabolismo , Epididimo/metabolismo , Fertilidade/genética , Deleção de Genes , Mutação , Canais de Cátion TRPV/genética , Animais , Sequência de Bases , Primers do DNA , Feminino , Masculino , Camundongos , Camundongos Knockout , Motilidade dos Espermatozoides/genética
9.
J Biol Chem ; 286(14): 12221-33, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21278253

RESUMO

TRPM1 is the founding member of the melastatin subgroup of transient receptor potential (TRP) proteins, but it has not yet been firmly established that TRPM1 proteins form ion channels. Consequently, the biophysical and pharmacological properties of these proteins are largely unknown. Here we show that heterologous expression of TRPM1 proteins induces ionic conductances that can be activated by extracellular steroid application. However the current amplitudes observed were too small to enable a reliable biophysical characterization. We overcame this limitation by modifying TRPM1 channels in several independent ways that increased the similarity to the closely related TRPM3 channels. The resulting constructs produced considerably larger currents after overexpression. We also demonstrate that unmodified TRPM1 and TRPM3 proteins form functional heteromultimeric channels. With these approaches, we measured the divalent permeability profile and found that channels containing the pore of TRPM1 are inhibited by extracellular zinc ions at physiological concentrations, in contrast to channels containing only the pore of TRPM3. Applying these findings to pancreatic ß cells, we found that TRPM1 proteins do not play a major role in steroid-activated currents of these cells. The inhibition of TRPM1 by zinc ions is primarily due to a short stretch of seven amino acids present only in the pore region of TRPM1 but not of TRPM3. Combined, our data demonstrate that TRPM1 proteins are bona fide ion-conducting plasma membrane channels. Their distinct biophysical properties allow a reliable identification of endogenous TRPM1-mediated currents.


Assuntos
Membrana Celular/metabolismo , Canais de Cátion TRPM/metabolismo , Zinco/farmacologia , Linhagem Celular , Eletrofisiologia , Transferência Ressonante de Energia de Fluorescência , Humanos , Imunoprecipitação , Mutação , Canais de Cátion TRPM/efeitos dos fármacos , Canais de Cátion TRPM/genética
10.
J Biol Chem ; 286(12): 10084-96, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21257751

RESUMO

The neurosteroid pregnenolone sulfate acts on the nervous system by modifying neurotransmission and receptor functions, thus influencing synaptic strength, neuronal survival, and neurogenesis. Here we show that pregnenolone sulfate induces a signaling cascade in insulinoma cells leading to enhanced expression of the zinc finger transcription factor Egr-1 and Egr-1-responsive target genes. Pharmacological and genetic experiments revealed that influx of Ca(2+) ions via transient receptor potential M3 and voltage-gated Ca(2+) channels, elevation of the cytosolic Ca(2+) level, and activation of ERK are essential for connecting pregnenolone sulfate stimulation with enhanced Egr-1 biosynthesis. Expression of a dominant-negative mutant of Elk-1, a key regulator of gene transcription driven by a serum response element, attenuated Egr-1 expression following stimulation, indicating that Elk-1 or related ternary complex factors connect the transcription of the Egr-1 gene with the pregnenolone sulfate-induced intracellular signaling cascade elicited by the initial influx of Ca(2+). The newly synthesized Egr-1 was biologically active and bound under physiological conditions to the regulatory regions of the Pdx-1, Synapsin I, and Chromogranin B genes. Pdx-1 is a major regulator of insulin gene transcription. Accordingly, elevated insulin promoter activity and increased mRNA levels of insulin could be detected in pregnenolone sulfate-stimulated insulinoma cells. Likewise, the biosynthesis of synapsin I, a synaptic vesicle protein that is found at secretory granules in insulinoma cells, was stimulated in pregnenolone sulfate-treated INS-1 cells. Together, these data show that pregnenolone sulfate induces a signaling cascade in insulinoma cells that is very similar to the signaling cascade induced by glucose in ß-cells.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/biossíntese , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Insulinoma/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Neoplasias/biossíntese , Pregnenolona/farmacologia , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPM/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Proteína 1 de Resposta de Crescimento Precoce/genética , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Regulação Neoplásica da Expressão Gênica/genética , Insulinoma/genética , Camundongos , Complexos Multiproteicos/genética , Proteínas de Neoplasias/genética , Ratos , Transdução de Sinais/genética , Canais de Cátion TRPM/genética
11.
Nat Cell Biol ; 10(12): 1421-30, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18978782

RESUMO

Transient receptor potential (TRP) cation channels are renowned for their ability to sense diverse chemical stimuli. Still, for many members of this large and heterogeneous protein family it is unclear how their activity is regulated and whether they are influenced by endogenous substances. On the other hand, steroidal compounds are increasingly recognized to have rapid effects on membrane surface receptors that often have not been identified at the molecular level. We show here that TRPM3, a divalent-permeable cation channel, is rapidly and reversibly activated by extracellular pregnenolone sulphate, a neuroactive steroid. We show that pregnenolone sulphate activates endogenous TRPM3 channels in insulin-producing beta cells. Application of pregnenolone sulphate led to a rapid calcium influx and enhanced insulin secretion from pancreatic islets. Our results establish that TRPM3 is an essential component of an ionotropic steroid receptor enabling unanticipated crosstalk between steroidal and insulin-signalling endocrine systems.


Assuntos
Células Secretoras de Insulina/metabolismo , Receptores de Esteroides/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Fenômenos Biofísicos/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Cátions Monovalentes/farmacologia , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Camundongos , Nifedipino/farmacologia , Permeabilidade/efeitos dos fármacos , Pregnenolona/farmacologia , RNA Interferente Pequeno/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...